首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264742篇
  免费   7200篇
  国内免费   5498篇
测绘学   7627篇
大气科学   21538篇
地球物理   55911篇
地质学   93220篇
海洋学   22728篇
天文学   55284篇
综合类   2000篇
自然地理   19132篇
  2021年   2578篇
  2020年   2934篇
  2019年   3229篇
  2018年   4082篇
  2017年   3825篇
  2016年   6358篇
  2015年   4676篇
  2014年   7500篇
  2013年   14804篇
  2012年   7121篇
  2011年   8563篇
  2010年   7595篇
  2009年   10195篇
  2008年   9068篇
  2007年   8463篇
  2006年   10067篇
  2005年   8115篇
  2004年   7961篇
  2003年   7356篇
  2002年   6974篇
  2001年   6292篇
  2000年   5940篇
  1999年   5330篇
  1998年   5307篇
  1997年   5063篇
  1996年   4657篇
  1995年   4698篇
  1994年   4323篇
  1993年   4051篇
  1992年   3765篇
  1991年   3719篇
  1990年   3781篇
  1989年   3459篇
  1988年   3297篇
  1987年   3790篇
  1986年   3313篇
  1985年   4177篇
  1984年   4666篇
  1983年   4343篇
  1982年   4274篇
  1981年   3893篇
  1980年   3626篇
  1979年   3454篇
  1978年   3439篇
  1977年   3225篇
  1976年   2974篇
  1975年   2908篇
  1974年   2879篇
  1973年   3063篇
  1972年   1997篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
992.
993.
994.
995.
The Dabaoshan polymetallic deposit is a polygenetic composite ore deposit located at south of the Qinhang (Qinzhou-Hangzhou) Metallogenic Belt, which is composed mainly of SEDEX type Cu-Pb-Zn and porphyry-skarn type W-Mo orebodies. Systematic field study shows that the W-Mo mineralization exhibits as quartz-vein type and skarn type orebodies around the granodioritic porphyry, or superimposes on the SEDEX type Cu-Pb-Zn orebody, while the Cu-Pb-Zn mineralization occurs mainly in the Qiziqiao Formation as stratiform-substratiform type and breccia type orebodies with typical SEDEX-type characteristics. Re-Os dating of five molybdenite separates from porphyry-skarn type W-Mo orebodies yielded isochron ages of 163.6±1.0 Ma (MSWD=0.58), which represents the age of W-Mo mineralization. Re-Os dating of seven black carbonaceous mudstone samples from a Cu-Pb-Zn orebody yielded isochron age of 387.6±9.9 Ma (MSWD=56), which is interpreted to be the age of SEDEX-type Cu-Pb-Zn mineralization. These ages indicate that there are at least two stages of ore mineralization in the Dabaoshan polymetallic deposit. The W-Mo mineralization is related to the Yanshanian intermediated-acidic intrusions, while the stratiform-substratiform SEDEX-type Cu-Pb-Zn mineralization is associated with the Hercynian seafloor hydrothermal activities. © 2018, Science Press. All right reserved.  相似文献   
996.
Due to strong remodification and sparse trace remnants, tectonic restoration is critical for the reconstructing of the paleography and basin-prototype in the multiple-cycles superimposed basin, which is also fundamental for the hydrocarbon exploration of the deep marine carbonate in the Tarim Basin. This study presents the tectonic framework of the transition phase from the Sinian to the Cambrian Period and its constrains on the paleography of the Cambrian in the Tarim Basin based on comprehensive analysis of new geochronology data, seismic data and regional tectonic data. The results showed that (1) there is a large regional unconformity between the Cambrian and Precambrian, suggesting a discontinuous deposition from the Sinian to the Cambrian that is contrary to the major view; (2) a broad flattened paleotopography formed before Cambrian Period, which is favorable for the wide epicontinental sea environment and a gentle homoclinal ramp platform development in the early Cambrian, and the residual basement low relief uplifts that influence the microfacies differentiation in the carbonate platform; (3) the Cambrian carbonate platform has been involved much into the marginal orogenic belts, and the proto-platform is probably of 200 km out of the present basin in S-N direction; (4) there is a weak extensional setting in the Cambrian-Early Ordovician rather than a strong rifting setting with a large aulacogen into the platform, in which a inter-platform shallow depression and stable ramp platform developed in the Cambrian; (5) there is not troughs, but rather low relief uplifts developed in the Early Cambrian in the southwestern Tarim Basin, and lack of large uplifts along the carbonate platform margins; (6) it is showed a broad architecture of platform-wide slope-ocean basin from the inner Tarim plate to its margin in the Cambrian Period. Considering the basin prototype, the restoration of the tectono-paleography in the early Cambrian in the Tarim Basin is distinct from those of the previously proposed. We propose that a gentle pattern with “two platforms and one inter-depression” in E-W striking other than multiple small platform constrained in the basin, and further subdivision of the western platform with inner platform low uplift and sag in N-S striking, which is possibly inherited from the basement architecture. On the outer of the united platform, there is probably broad gentle slope for transition to ocean basin. We therefore argue that tectonic restoration is crucial for reconstruction of the paleogeography and basin prototype, especially for basins experienced multiphase of tectonic cycles. © 2018, Science Press. All right reserved.  相似文献   
997.
In the Mikengshan-Yanbei area, a special region for the tin mineralization in South China, there are some Yanshanian granites and porphyries and associated porphyry tin deposits (e.g., Yanbei). Although the tin mineralization is closely associated with the granitoids magmatism, the age and petrogenesis of the granites remain controversial. The Mikengshan pluton, which intrudes into the rhyolitic tuff and pyroclastic rocks of the Upper Jurassic Jilongzhang Formation, is the largest one in Mikengshan-Yanbei area and mainly consists of K-feldspar bearing granites. In this study, we report new age and geochemical data for the Mikengshan K-feldspar bearing granites. LA-ICP-MS zircon U-Pb age dating shows that they were generated in the Early Cretaceous (~138 Ma). They have high SiO2 (74.42% to 76.69%), low Al2O3 (12.39% to 13.49%) and Mg# (11 to 19), and negative Eu, Sr and Ba anomalies, and are rich in potassium (most K2O/Na2O=1.37 to 1.94) and high field strength elements (HFSEs), and are weakly peraluminous (A/CNK=1.03 to 1.1) with high 10000×Ga/Al ratios (3.46 to 4.96) and slightly high zircon saturation temperatures (807 ℃ to 817 ℃), showing the characteristics of the typical A-type granites. Moreover, they have high Rb contents 842×10-6 to 1295×10-6, Rb/Sr (90 to 255) ratios and show rare earth elements (REE) tetrad effect, which are similar to those of high fractionated granites. Thus, we suggested that the Mikengshan K-feldspar bearing granites are high fractionated and aluminous A-type granite. Their slightly high εNd(t) values (-3.4 to -4.6) indicate that the mantle components should have played a role during their formation. Taking into account regional igneous rocks and tectonic setting data, we suggest that the Mikengshan K-bearing granites were formed in an extensional setting, which was probably related to the roll-back of the subducted Paleo-Pacific plate. © 2018, Science Press. All right reserved.  相似文献   
998.
Although the middle section of the Bangong-Nujiang suture zone has been intensively investigated, its tectonic framework and evolution is still controversy. The Pungco ophiolite has a relative complete ophiolitic complex, which is an ideal specimen for studying this tricky problem. LA-ICP-MS U-Pb dating of zircons from the diabasic rock yielded an age of 159.0±2.1 Ma. This age suggests that the Pungco ophiolite was formed in the Late Jurassic, indicating the development of the Late Jurassic ophiolite in the third ophiolitic subzone. The whole-rock major and trace element compositions of diabasic and basaltic rocks exhibit mixed arc and N-MORB geochemical characteristics. Two diabasic samples have (87Sr/86Sr)i values of 0.7055 and 0.7063 and εNd(t) values of 11.28 and 11.84, respectively. The geochemical signatures and formation age of the Pungco ophiolite suggest that this ophiolite was probably produced in an active continental fore-arc setting. It originated from a N-MORB-like depleted mantle source with the involvement of subducted-slab fluids. Considering the regional geological background, the Pungco ophiolite was likely generated during the southward subduction of the Bangong-Nujiang Tethyan oceanic lithosphere beneath the Lhasa terrane, and belongs to a regional archipelagic arc-basin system together with the other Early Jurassic-Early Cretaceous ophiolites from the northern Tibet Lake district. © 2018, Science Press. All right reserved.  相似文献   
999.
Various Palaeogenic deformations have been recognized in the central part of the Raoyang Sag. Based on seismic interpretation, the sedimentary sequences, structure features and activity of main faults have been studied. The results show that the Xianxian detachment fault, which is located in the eastern boundary of the Raoyang Sag, was still active during the Cenozoic and controlled the basinal deformation. The detachment depth and deformation of the Xianxian detachment fault are discussed based on the area-balance theory. The results reveal that patterns of the Paleogene structures vary considerably from the north to the south. Activity of the main faults in the hanging wall of the Xianxian detachment led to a westward migration of the deposition center. On the other hand, the uplifting of the dome related to the detachment resulted in fast denudation of the overlying sediments in locals. The deformation of detachment fault and activities of the major faults controlled the Paleogene deformation in the central part of the Raoyang Sag. © 2018, Science Press. All right reserved.  相似文献   
1000.
The Lehong zinc-lead deposit is one of the new-found large Zn-Pb deposits in the Sichuan- Yunnan-Guizhou Zn-Pb poly-metallic mineralization area. The ore-bodies of the Lehong deposit are strictly controlled by structures, and the fault tectonites can be divided into four groups which include morbruk rock, cataclastic rock and tectonic breccia. The mechanical properties of the faults suggest that there are five tectonic systems formed in the Caledonian-early Hercynian, Indosinian-early Yanshanian, mid-Yanshanian, late Yanshanian and Himalayan periods, respectively. The Lehong fault and the Qiaojia-Lianfeng fault are two important ore-controlling structures which might have acted as channel ways of the ore fluids. The ores are hosted in the subordinary fracture zone, joint fracture zone and interlayer fault zones in trailing folds of the Lehong fault and the Baobaoshang syncline and Jinjiagou anticline. Hence, the Lehong deposit is a tectonic -controlled ore deposit. These research do not only lay a foundation for studying deposit genesis and ore-finding direction in the Lehong deposit, but also provides important enlightenments for the ore-finding prognosis of lead-zinc deposits in northwestern Guizhou ore concentration district. © 2018, Science Press. All right reserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号